Teoria dei Giochi

Anna Torre

Almo Collegio Borromeo 6 aprile 2022 email: anna.torre@unipv.it

PROBABILITÀ CONDIZIONATA

La probabilità condizionata di un evento $\bf A$ rispetto a un evento $\bf B$ è la probabilità che si verifichi $\bf A$, sapendo che $\bf B$ si è verificato. Questa probabilità, indicata $\bf P(A|B)$, esprime una "correzione" delle aspettative per $\bf A$, dettata dall'osservazione di $\bf B$.

Esempio

Supponiamo che in una urna ci siano 3 palline bianche numerate da 1 a 3 e 5 palline nere numerate da 1 a 5. Estraiamo a caso una pallina.

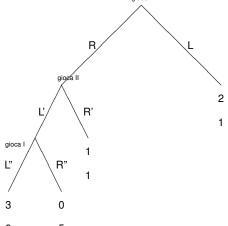
- Quale è la probabilità di avere estratto la pallina 1 nera
- Quale è la probabilità di aver estratto una pallina nera sapendo che abbiamo estratto una pallina con il numero 1?
- Quale è la probabilità di aver estratto una pallina con il numero 1 sapendo che abbiamo estratto una pallina nera?

PROBABILITÀ CONDIZIONATA

$$\mathbf{P}(\mathbf{A}|\mathbf{B}) = \frac{p(A \cap B)}{p(B)}$$

INDUZIONE A RITROSO

Un esempio di assunzione implicita della conoscenza comune della intelligenza e razionalità di tutti i gicatori è dato dalla cosidetta "induzione a ritroso".



Perche il ragionamento funzioni è necessario che II sappia che I è intelligente ma anche che I, oltre a sapere che II è intelligente sappia anche che II sa che I è intelligente.

STRATEGIA FORTEMENTE DOMINANTE

Dato un gioco a due giocatori in forma strategica

se per un certo \bar{x} e un certo x^*

$$f(\bar{x}, y) > f(x^*, y)$$

per ogni $y \in Y$ diciamo che \bar{x} domina fortemente x^* .

Se \bar{x} , domina x^* possiamo supporre che il giocatore I non giocherà x^* .

ELIMINAZIONE ITERATA DI STRATEGIE FORTEMENTE DOMINATE: SUCCESSI

	x	У	z
A	(<mark>2</mark> , 1)	(1, 3)	(<mark>0</mark> , 1)
В	(3, 0)	(<mark>2</mark> , <u>2</u>)	(1, 3)
С	(<mark>1</mark> , 1)	(4,-1)	(-1, 0)
\overline{D}	(2, 4)	(<mark>0, 0</mark>)	(-1, 3)

ELIMINAZIONE ITERATA DI STRATEGIE FORTEMENTE DOMINATE: SUCCESSI

	х	У	z
В	(<mark>3, 0</mark>)	(<mark>2, 2</mark>)	(<mark>1, 3</mark>)
С	(<mark>1</mark> , 1)	(4 ,-1)	(-1, <mark>0</mark>)

Sopravvive (B, z)

ELIMINAZIONE ITERATA DI STRATEGIE FORTEMENTE DOMINATE: LIMITI

	X	У	z
\boldsymbol{A}	(2, 1)	(1, 3)	(<mark>0</mark> , 1)
В	(<mark>3, 0</mark>)	(<mark>2, 2</mark>)	(1, 3)
С	(<mark>1</mark> , 1)	(4,-1)	(2, <mark>0</mark>)
D	(2, 4)	(<mark>0, 0</mark>)	(-1, <u>3</u>)

ELIMINAZIONE ITERATA DI STRATEGIE FORTEMENTE DOMINATE: LIMITI

	X	Z
В	(<mark>3, 0</mark>)	(<mark>1, 3</mark>)
С	(<mark>1</mark> , 1)	(<mark>2,0</mark>)

anche qui è necessario che ciascuno sappia che l'altro sappia che lui sa......

CONOSCENZA E CONOSCENZA COMUNE

- Supponiamo che due ragazze, entrambe con la faccia sporca, siano sedute una di fronte all altra e ciascuna di esse veda la faccia della altra.
- Supponiamo inoltre che le due ragazze siano intelligenti e razionali e abbiano assoluta fiducia nella intelligenza e razionalità dell altra, e abbiano assoluta fiducia nel fatto che l altra ha assoluta fiducia nel fatto che ciascuna ha assoluta fiducia nella intelligenza e razionalità dell altra e così via.
- Supponiamo inoltre che la intelligenza provochi I effetto che ciascuna di esse arrossisce se e soltanto se ha la certezza di avere la faccia sporca.

CONOSCENZA E CONOSCENZA COMUNE Osserviamo i due seguenti fatti:

- Ciascuna delle ragazze vede l' altra, quindi sa che almeno una ragazza ha la faccia sporca;
- Nessuna ragazza ha la possibilità di sapere se la sua faccia è sporca, perchè nella stanza non esistono specchi.
- Se questa è la situazione, nessuna ragazza ha motivo di arrossire

IL BANDITORE Supponiamo ora che entri una persona e faccia il seguente annuncio: Almeno una delle ragazze qui presenti ha la faccia sporca. Ovviamente viene annunciato un fatto già noto a entrambe ma la situazione cambia. Cosa è cambiato? È cambiato il fatto che l' annuncio mette a conoscenza le ragazze del fatto che entrambe sono a conoscenza del fatto che almeno una di loro ha la faccia sporca.

Indichiamo con Alice la prima ragazza e con Beatrice la seconda.

- A pensa: se B vede la mia faccia pulita, ora sa anche che almeno una ragazza ha la faccia sporca e la unica possibilità è che la faccia sporca sia la sua e quindi deve arrossire. Però B non arrossisce. Questo vuol dire che la mia faccia è sporca e quindi devo arrossire io.
- ▶ B pensa: se A vede la mia faccia pulita, ora sa anche che almeno una ragazza ha la faccia sporca e la unica possibilitÃăà è che la faccia sporca sia la sua e quindi deve arrossire. Però A non arrossisce. Questo vuol dire che la mia faccia è sporca e quindi devo arrossire io.
- Allora arrossiscono entrambe

CONOSCENZA E CONOSCENZA COMUNE

- Supponiamo che tre ragazze, tutte con la faccia sporca, siano sedute in cerchio e ciascuna di esse veda la faccia delle altre due.
- Supponiamo inoltre che le tre ragazze siano intelligenti e razionali e abbiano assoluta fiducia nella intelligenza e razionalità delle altre, e abbiano assoluta fiducia nel fatto che ciascuna delle altre ha assoluta fiducia nel fatto che ciascuna ha assoluta fiducia nella intelligenza e razionalità delle altre e così via.
- Supponiamo inoltre che l'intelligenza provochi l'effetto che ciascuna di esse arrossisce se e soltanto se ha la certezza di avere la faccia sporca.

CONOSCENZA E CONOSCENZA COMUNE

Osserviamo i due seguenti fatti:

- 1 Ciascuna delle ragazze vede le altre, quindi sa che almeno una di esse ha la faccia sporca;
- 2 Nessuna ragazza ha la possibilità di sapere se la sua faccia è sporca, perché nella stanza non esistono specchi.

Se questa è la situazione, nessuna ragazza ha motivo di arrossire.

IL BANDITORE

Supponiamo ora che entri una persona e faccia il seguente annuncio:

"Almeno una delle ragazze qui presenti ha la faccia sporca".

Ovviamente viene annunciato un fatto già noto a tutti, ma la situazione cambia.

Cosa è cambiato?

È cambiato il fatto che l'annuncio mette a conoscenza le ragazze del fatto che tutte e tre sono a conoscenza del fatto che almeno una di loro ha la faccia sporca.

LA CONOSCENZA COMUNE

Quali conseguenze ha questo?

- Indichiamo con A, B, C le tre ragazze.
- Mettiamoci dal punto di vista di A
- ▶ A pensa: se io ho la faccia pulita, B e C osservano ciascuna una sola faccia sporca. Quindi per esempio B, se C non arrossisce, sa di avere la faccia sporca. C non arrossisce, quindi presto B avrà la certezza che le facce sporche sono almeno due e, sempre nel caso che la mia faccia sia pulita, arrossirà.
- Ma B non arrossisce, io ho la certezza che le facce sporche sono tre e poichè sono "intelligente" mi tocca di arrossire.

Simmetricamente anche ciascuna delle altre ragazze fa lo stesso ragionamento e quindi ha la certezza di avere la faccia sporca, dunque arrossisce.

LA CONOSCENZA COMUNE

- L'ipotesi di conoscenza comune ha permesso un passaggio di informazione "silenzioso" dovuto semplicemente alla osservazione, da parte di ciascuna ragazza, dei comportamenti delle altre e alla certezza che tali comportamenti dovevano essere intelligenti.
- Ciascuna ragazza "fidandosi dei comportamenti dell'altra" alla fine assume informazione.

Conoscenza comune e informazione asimmetrica

Il più noto risultato ottenuto con la definizione formale di conoscenza comune è il teorema di Aumann, che assicura che, sotto opportune ipotesi, giocatori intelligenti non possono essere d'accordo di non essere d'accordo sulla probabilità che ciascuno di essi assegna a un dato evento, se queste probabilità sono conoscenza comune.

Essere d'accordo di non essere d'accordo

- L'idea intuitiva del teorema è: se un giocatore sa che gli altri giocatori hanno aspettative diverse dalle sue, egli rivede le sue aspettative per tener conto di quelle degli altri.
- perché il risultato sia valido è necessario che ciascuno pensi che il modo di ragionare degli altri è corretto e che la differenza nelle aspettative riflette solo qualche informazione obiettiva.
- È inoltre necessario che tutti i giocatori abbiano quella che si dice una "common prior", e cioè che abbiano una distribuzione di probabilità a priori uguale tra di loro, e che questa distribuzione di probabilità a priori sia conoscenza comune
- Le esperienze diverse portano ad avere distribuzioni di probabilità diverse da quelle iniziali
- Nel momento però in cui queste nuove probabilità diventano conoscenza comune, ciascuno le rivede per l'assoluta fiducia che ha nella intelligenza e razionalità degli altri.

essere d'accordo di non essere d'accordo

Aumann, Robert J. [1976]: Agreeing to Disagree, Annals of Statistics, 4, 1236-1239. Sia $\omega \in \Omega$. Supponiamo che sia conoscenza comune in ω che la probabilità a posteriori di un evento E è q_i per il giocatore i e q_i per il giocatore j. Allora $q_i = q_j$.

Osserviamo che il teorema di Aumann assicura soltanto che le probabilità a posteriori sono uguali, ma non dice affatto che a posteriori i giocatori sappiano per quali motivi la probabilità dell'altro è quella annunciata

$$\Omega = \{(0,0), (0,1), (1,0), (1,1)\},\$$

e supponiamo che su Ω ci sia una distribuzione di probabilità a priori uniforme. Il giocatore 1 vede solo la prima componente dell'elemento di Ω , mentre il giocatore 2 vede solo la seconda componente. Dunque

$$H_1 = \{\{(0,0),(0,1)\},\{(1,0),(1,1)\}\}$$

е

$$H_2 = \{\{(0,0), (1,0)\}, \{(0,1), (1,1)\}\}.$$

In $\omega=(0,0)$, calcoliamo le probabilità a posteriori dell'insieme $E=\{(0,0),(1,1)\}$. Si ha $q_1(E)=q_2(E)=1/2$. Ma quando entrambi i giocatori annunciano queste probabilità nessuno dei due dà all'altro alcuna nuova informazione. Infatti, per esempio, vediamo la situazione del giocatore 1. In ω egli vede $\{(0,0),(0,1)\}$ e il fatto che il giocatore 2 annuncia 1/2 per 1 è perfettamente compatibile con il fatto che 2 veda invece $\{(0,1),(1,1)\}$. Nessuna informazione sul procedimento logico che ha portato 2 a dichiarare 1/2 è passata.

IL primo giocatore osserva l'esito del primo dado (rosso) e il secondo osserva l'esito del secondo dado (blu). Quale probabilità assegnano al fatto che lo stato vero del mondo sia E?(insieme dei pallini neri).

	1	2	3	4	5	6
1						
2						
3						
4				•	•	•
5		•	•			
6	•					

Le prior di entrambi sono $\frac{1}{6}$ Dopo aver osservato ciascuno l'esito del suo dado chi osserva il dado blu aggiorna a $\frac{1}{6}$ mentre il giocatore che osserva il dado rosso aggiorna a $\frac{1}{3}$. Quando le informazioni vengono scambiate il giocatore che osserva il dado blu è sicuro che lo stato vero del mondo è (5,3) e quindi assegna ad E probabilità 1. Una volta rese note queste nuove probabilità, il giocatore che osserva il dado rosso è certo che lo stato vero del mondo è uno fra (5,2) e (5,3) e quindi assegna ad E probabilità 1.

	1	2	3	4	5	6
1					•	•
2					•	•
3					•	•
4					•	•
5						
6						

Le prior di entrambi sono $\frac{8}{36}$. Dopo aver osservato ciascuno l'esito del suo dado chi osserva il dado blu aggiorna a $\frac{2}{3}$ mentre il giocatore che osserva il dado rosso aggiorna a $\frac{1}{3}$. Quando le informazioni vengono scambiate il giocatore che osserva il dado blu è sicuro che lo stato vero del mondo non è (5,5) nè (5,6) quindi assegna ad E probabilità 1. Analogo discorso per chi osserva il dado blu.

	1	2	3	4	5	6
1					•	•
2					•	•
3					•	•
4					•	•
5	•	•				
6	•	•				

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6	•					

	1	2	3	4	5	6
1						•
2					•	
3				•		
4			•			
5		•				
6	•					

	1	2	3	4	5	6
1						
2						
3						
4						
5		•				
6	•					

	1	2	3	4	5	6
1				•	•	
2				•	•	
3						
4						
5		•				
6	•					

Esercizio

IL primo giocatore osserva l'esito del primo dado (rosso) e il secondo osserva l'esito del secondo dado (blu). Quale probabilità assegnano al fatto che lo stato vero del mondo sia E?(insieme dei pallini neri).

	1	2	3	4	5	6
1				•	•	
2				•	•	
3						
4						
5	•	•				
6	•	•				

Soluzione

La prior di entrambi e $\frac{8}{36}$. Successivamente il primo vede 6 e il secondo 1 e quindi aggiornano entrambi le loro probabilità a $\frac{1}{3}$. Quando questi dati vengono resi pubblici entrambi associano $\frac{1}{2}$ alla probabilità dell'evento.